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Abstract. A mathematical model for the simulation of the motions of sails on yachts has been built. Sails provide 

the aerodynamic forces used for propulsion; but being very thin, they have their shape adapted according to the 

locally developing pressures. Thus the flying shape of a sail in real sailing conditions differs from its design 

shape and it is basically unknown. In this model the fluid-structure interaction problem of the sails is handled by 

a low order Boundary Element Method for the aerodynamic part (Lifting Surface), coupled with a finite element 

method for the structural part (Shell Elements) and an iterative scheme that provide the converged flying shape 

of the sail and the sustained forces and moments. A future version of this model is intended for course stability 

analysis of a yacht in waves. 

 

1 INTRODUCTION  

 

Sails are surfaces of very small thickness and while this allows a major simplification in the fluid modelling, 

it simultaneously induces a drawback. This insignificant thickness makes the sail to be a very flexible surface, 

subjected to deformations due to the pressure forces it sustains under wind flow. Calculating the flow around 

them then is not enough, as one should be able to account for the difference between the design shape of the sail 

and the flying shape it adopts. Moreover, it is important to know the effect this bears to the forces and moments 

on the sail. Excluding wind tunnel tests and real-time measurements at sea, a common computational approach is 

to combine a fluid solver for the flow field around the sail with a structural solver for the transition of the initial 

to the new shape. 

Regarding the aforementioned simplification, the small thickness of the sail makes it ideal for being modelled 

with a potential flow method, such as the one using the Lifting Surface Theory (L.S.T.). This is a formulation for 

lifting flows that allows the effects of camber and thickness to be decoupled and it is usually applied through a 

numerical scheme based on the Vortex Lattice Method (V.L.M.). While the lifting surface bears minimal 

computational cost, it requires that the flow always remains attached to the surface, thus restraining L.S.T.’s 

applicability to a relatively small range of fluid inflow angles. To examine the behaviour of a sail in a wider 

operational range where drag effects become dominant, the use of viscous flows methods such as RANSE 

solvers is unavoidable. These provide great detail of the flow field but induce a considerable computational cost. 

This would be incompatible with the longer term objective of the current work which is, to perform dynamic 

stability analysis of a yacht’s motion considering the coupled aero-hydrodynamic problem. 

Once the pressure around the sails is known, their new shape can be derived using a Finite Element Method 

formulation. While using a simple approach to derive the new shell shape is acceptable, such as describing the 

sail surface by a single type of shell element, this is too subjected to some errors:  sails, being made of woven 

panels joined together and reinforced with fibers, are hardly isotropic.  

There is a wide range of available research on the area of “flying” sail analysis. Ranzenbach et al [1], combined 

a potential flow vortex lattice formulation integrated with a viscous boundary layer for attached flows, with a 

quadrilateral element FEM solver that included the capability of modelling wrinkling effects of the sails. Graf et 

al [2] implemented a FEM solver of triangular elements into a RANSE commercial package to calculate the flow 

around downwind sails. Schoop et al [3] introduced the quasi-continuous Vortex Lattice Method, where the 

discrete vortex forces were transformed to a continuous pressure field around the sail, while the FEM solver 

consisted of higher order quadrilateral elements. Vernengo et al [4] applied the Vortex Lattice Scheme in a 

formulation very similar to the modelling we use here, and along with Trimarchi [5] coupled it with a FEM code 

of triangular membranes reinforced with cable elements. Many other research contributions to the problem are 

available through the literature, handling either the combined case or a specific component in increased detail. 
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In need of a relatively fast method to be coupled with a hull analysis solver, the choice has been made to use the 

Lifting Surface Vortex Lattice Method and a FEM using triangular shell elements with joint membrane and 

bending parts.  

2 GENERAL FORMULATION 

The sails are considered in an initial equilibrium with zero camber (flat surfaces). Using the wind velocity 

and angle of attack the Lifting Surface Theory is used to calculate the pressure difference between the two sides 

of each sail surface. This pressure is then used to calculate nodal forces on the vertices of the triangles. These 

forces are subsequently used as input to the Shell FEM module to calculate the nodal displacements. The 

deformed surface is directed as input to the Lifting Surface module and the procedure commences following an 

iterative scheme until the calculated between successive steps aerodynamic forces have converged, as in the flow 

diagram of Figure 1. 

 
Figure 1. Algorithm Flow Diagram 

 

2.1 Aerodynamic Part 

 

Considering a body moving inside a large volume of inviscid, incompressible and irrotational fluid, then the 

fluid velocity can be described by the gradient of a scalar potential   which satisfies the Laplace Equation  

 

                                                                                                     

 

where         ,    being the perturbation potential due to the presence of the body and     the free stream 

potential. In order to approach the system with a boundary value technique, we need to set a series of boundary 

conditions such as: 

 

                no entrance boundary condition                                      ⃗                                                                      

                body induced disturbance decay far from the body                 ⃗                                                        
 

where  ⃗  is the free stream velocity and  ⃗  the surface normal vector. 

 

The L.S.T is actually a linearized Boundary Element Method offering a formulation that allows the effects of 

camber and thickness to be decoupled, and the no-entrance boundary condition to be transferred to the mean 

camber line of a surface. The Vortex Lattice Method is a numerical scheme that discretizes a surface into a series 

of rectangular panels, allowing so the real flow to be approximated by placing a series of discrete lines of 

vorticity instead of a continuous distribution along the field. It was introduced by Faulkner in 1943 [6] and since 
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then it has been used mainly for the study of single or multiple airfoils and extended over propellers and ship 

rudders. 

In terms of the Lifting Surface Theory a system of constant strength horseshoe vortices is placed on every panel 

of the surface. The vortex induced velocity is evaluated using the Biot Savart Type Integral for the induced 

velocity of a vortex segment of constant strength Γ to any point P: 

 

   ⃗⃗⃗⃗  
 

  
∫

     ⃗  

| ⃗ | 
                                                                                    

 

where  ⃗  is the vector from the segment    to the point  .  Derivation of  equation (4) and the underlying theory 

is explained thoroughly on fluid dynamics literature as on Spurk [7]. Following the numerical treatment as in 

Katz et al [8], equation (4) transforms to the vectorial form : 
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where   ⃗⃗⃗⃗  is the vector (  ⃗⃗⃗⃗  ⃗), and    ⃗⃗⃗⃗  ⃗   ⃗⃗⃗⃗  are the position vectors of P from the filament’s edges. The vortex 

consists of a parallel to the leading panel edge filament and two trailing filaments that run towards the trailing 

edge where the Kutta condition is satisfied and further to the wake. As the wake is a free shear layer, it can only 

carry vorticity. The flow being steady, it allows a first approximation for the free vortex sheet, with the vortex 

lines aligned with the initially undisturbed flow (frozen wake propagating aft on the direction of the free stream).  

 

Each panel contains a control point P where the vortex induced velocity from the same or another panel is 

evaluated. The leading segment of every horseshoe vortex is placed on the ¼ each panel’s chord line [8]. Root 

and tip trailing vortex segment are moved inwards by a quarter of an element span, as in Willis [9], for increased 

accuracy. The control point is placed on each panel on the ¾ of its chord line, where the boundary condition of 

no-entrance is to be satisfied. The induced velocity of every horseshoe vortex j to every point i can be 

represented by a matrix of influence coefficients     and the no-entrance boundary condition reduces to a system 

of linear equations: 

∑    

 

     

     ⃗    ⃗                                                                                       

 

Once the coefficient matrix has been calculated, the linear system is solved using LU decomposition for the 

strength of the horseshoe vortices. Solving of the circulation Γ allows for the calculation of the total velocities. 

Once these are known, the wake vortex lines are then rotated in order to apply the force free condition and to be 

aligned with the local total velocity vectors, providing so the roll-up of the wake until convergence is met, as in 

the steady case treatment of a 3D hydrofoil problem from Lee [10]. Finally the forces on the sail are calculated 

using the Kutta - Jukowski theorem for a vortex line of intensity     and tangential velocity  ⃗  : 
 

                                                              ⃗     ⃗                                                                                                  
 

2.2 Aeroelastic Part 

 

We use the flat triangular shell element that consists of a membrane and a bending element. The membrane 

elements are Constant Strain Triangles (CST) while the bending elements are Discrete Kirchhoff Triangles 

(DKT). The flat elements are thus developed by superimposing the stiffness of the membrane and the bending 

elements. 

 

The membrane contribution to the shell element is provided by the Constant Strain Triangle under plane stress 

conditions. As in Zienkiewicz [11a & 11b] we consider a single flat triangle element with three nodes and two 

degrees of freedom per node, totaling to six. Each node is allowed to move in the planar directions u and v 

(Figure 2a).  

 

The shape functions for each node i, j, m are linear functions of x and y :    
          

  
   where:                      

            ,         ,          and A is the area of the triangle, while the rest of the 

coefficients are obtained by permutation of i, j, m. The membrane stiffness matrix for any triangular shell 

element {e} is [11a]: 
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      is the strain displacement matrix and    is the elasticity 

matrix for plane stress. The product   
      is free of x or y terms, so         

  
 
       (10). 

 

 
Figure 2a. Membrane Element (CST)  Figure 2b. Plate Element (DKT) 

 

For the  plate bending part we adapt the formulation of Batoz [12] and  consider the Discrete Kirchhoff Triangle, 

an element with three nodes and three degrees of freedom per node, w being the normal to the triangle 

displacement and        the rotations around the x and y axis respectively (Figure 2b). 

 

        ∫ ∫   
 

   

   

  

 

   

                                                                 

where    is the elasticity bending matrix for an isotropic homogeneous material and    
is the strain-

displacement transformation matrix. This is more complicated than the membrane element and it is expressed in 

terms of the rotations of the normal of the initial surface. These are described quadratically over the surface as 

   ∑   
    

     where           and ξ,η are the natural coordinates. Satisfying the Kirchhoff Hypothesis 

and relating the rotations to the normal displacement,     become:      
       , where X is the displacement 

matrix and   
    

  are the new shape functions whose derivatives are used in the calculations and which are 

given explicitly in [12]. The strain displacement matrix is then 

        
 

  
[

       
         

 

        
         

 

        
         

         
         

 

]                                       

 

The integral of the bending stiffness matrix over the area A of the triangle is calculated using Gauss - Legendre 

Quadrature Integration as in Rathod [13].  

 

When both matrices have been shaped, then for each discrete shell element the total stiffness matrix is assembled 

as                     , and for the association of all shell elements and their nodes with their 

neighbours, a diagonal “supermatrix” is assembled which is filled with the stiffness matrices of each shell 

element        . To derive the total stiffness matrix, the “supermatrix” needs to be multiplied by the boolean 

matrix   and its transpose. The boolean matrix is created as in Davies [14] and contains the information 

regarding the connectivity of the elements.  

 

                                                                                                

 

Since the loading on the sail is already known as the result of the preceding aerodynamic calculation, then the 

system to be solved is of the form  
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or 

[

         
   
         

]  {
   

 
   

}  {
   

 
   

}                                                                

where n  is the node number and i  is the i
th

 degree of freedom. Some nodes are able to move while others are 

considered fixed. The latter carry a zero value of niU . Application of this boundary condition and prior to the 

solution of the system, enables the partitioning of the stiffness matrix and provides a matrix of smaller 

dimensions to solve, reducing thus the overall computation cost. The solution of the linear system is derived 

using LU decomposition. 

 

2.3  Verification 

 

As mentioned earlier, since the Lifting Surface formulation allows the treatment of the camber problem, only 

this allows the simulation of an asymmetrical airfoil by introducing her camber line as the surface chord. The 

NACA 4412 was chosen and modeled as a rectangular wing of 7.50 m span and 1.80 m chord (Figure 3) and the 

lattice was formed of 9 spanwise and 15 chordwise panels. 

 
Figure 3. Cambered Wing Surface and Wake Roll-Up. 

 

The surface was tested on three different Reynolds numbers 2×10
5
, 5×10

5
 and 10

6
, corresponding to an inflow 

wind speed of about 3, 7 and 14 knots respectively. 

 

 
Figure 4. Lift and Drag Coefficients of Cambered Surface. 

 

For smaller Reynolds numbers, as the angle of attack increases, separation occurs on a point that is relatively 

near the leading edge. Flow separation is not handled by L.S.T. which assumes the flow to be attached to the 

body. This explains the deviation of Lift Coefficients on the left part of Figure 4. As the inflow velocity 

increases the separation point moves backwards and L.S.T. seems more consistent with the real case. However 

viscous effects are always present and differences between the real case and computational results are 

unavoidable. Beyond the range of  (-10
o
, 15

o
) the error increased vastly and the calculated values cannot be taken 

into account. Lastly while the lattice was crude, in the aforementioned angle regime it approached the real values 

quite enough. 
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For the shell elements, a square 2 mm thick PET surface was subjected to a uniform pressure load of 20 kN/m
2
, 

where the nodes around the perimeter were restrained from moving while the inner nodes were free and the same 

case was tested using commercial FEM package. In both cases the maximum deflection of the surface was 53 

mm around the center of the surface. Points around the centre of the developed code carried a difference of  less 

than a millimeter. However on the points around the perimeter the difference increased up to 3.5 mm (on the first 

inner perimeter). It is very probable that this is due to the way the boundary conditions are applied on each code. 

On Figure 5 the “z” displacements of both codes have been scaled by 10. 

              

       
Figure 5. Bended under uniform pressure Surface using commercial FEM and shell elements. 

 

 

3 CASE STUDY - RESULTS 

 

The yacht under study is a 45’ cruising hull whose hull geometry and loading conditions were available to the 

authors. The sails were modeled assuming an isotropic Kevlar surface. The yacht main dimensions and data are 

in table 1. 

 

HULL 

 

Length Overall 13.90 m 

Length Waterline 12.86 m 

Beam Waterline 2.50 m 

SAILS 

I (JIB) 15.70 m 

J (JIB) 7.40 m 

P (MAIN) 17.40 m 

E (MAIN) 5.30 m 

Young Modulus 1935 N/mm
2
  

Poisson Ratio 0.45 Table 1. Hull and Sails Dimensions and Material Data 

Thickness 0.8 mm  

 

The yacht was subjected to a set of wind speeds creating a series of CL and CD diagrams for the upwind sailing 

case, in the incoming flow angle of [0-40] degrees. As already mentioned in the verification part, the code 

overestimates the maximum CL and transposes the stall angle further right than its real value, as separation 

effects are not handled by the current formulation. In the following graphs (Figure 6) are shown the CL and CD 

curves for relative wind speed of 10 knots. The number of necessary iterations for convergence is increasing in 

respect of the relative wind inflow angle, and reaches 25-30 iterations for very large angles. An example of 

converged shapes is appears in Figure 7. 
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Figure 6. CL-CD diagrams, VW= 10 kn. 

 
Figure 7. Two Sails System (Sails on flying shapes and Wake Streamlines) 

 

4 CONCLUSIONS – FUTURE WORK 

 

Two numerical schemes have been combined for the aerodynamic and structural modeling of sails under inflow 

wind. Both models balance the lack of detail with their computing speed allowing them to be implemented in an 

overall ship manoeuvring model. The Lifting Surface Vortex Lattice is a potential flow theory application that 

allows a thin object to be investigated by taking into account its camber line only. The triangular shell elements 

implemented in the finite element scheme can handle a deformation analysis of a thin isotropic surface under 

simple loading cases. The Lifting Surface method provides realistic results for a range of 20 to 25 degrees of 

fluid angle of attack around the leading edge, but as it doesn’t take into account separation effects, it 

overestimates the lifting force of the sail and it increases the stall angle. The triangular shell element showed fair 

agreement with the results of a commercial package of FEM analysis for some simple tests. The model is crude, 

as sails were considered isotropic while they are usually orthotropic materials reinforced with fibers and 

wrinkling effects have been ignored. 

 

Future work includes adding for the effects of a boundary layer, increase the order of the shell element in use, 

extend this model to a solver of unsteady cases and implementation of it into an overall model as a tool of 

investigating the directional instabilities of sailing yachts in waves. 
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